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On the affine self-similarities of the three-dimensional
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Department of Mathematics, Faculty of Physics, University of Bucharest, PO Box 76-54,
Bucharest 76, Romania
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Abstract. We prove that the vertex setQ of the usual three-dimensional Penrose tiling admits
an infinite number of independent scaling factors and an infinite number of inflation centres.
More exactly, we prove that there exist an infinite number of real numbersα and an infinite
number of pointsq ∈ Q such thatr ∈ Q H⇒ α(r − q)+ q ∈ Q.

A subsetP of the usual three-dimensional Euclidean spaceE3 = (R3, 〈, 〉) is said [7, 1] to
be invariant under the affine similarityof centrer0 and scaling factorα 6= 0

A : E3 −→ E3 : r 7→ Ar = α(r − r0)+ r0 (1)

if r ∈ P H⇒ Ar ∈ P. In this case,A is called aself-similarity of P.
The three-dimensional Penrose tiling, its strip projection construction [5, 6], and the

invariance of the corresponding vertex setQ under the similarityE3 −→ E3 : r 7→ τ 3r,
whereτ = 1

2(1+
√

5) are well known. The review of these results in a revisited mathematical
formalism [3, 4, 8, 2] presented in the first part of the paper will allow us to prove the
existence of a one-dimensional quasicrystalC such thatQ is invariant under the similarity
r 7→ αr, for any α ∈ C − {0}. In the case whereα ∈ C satisfies an additional condition
we prove the existence of an infinite setQα ⊂ Q such thatQ is invariant under the affine
similarity r 7→ α(r − q)+ q, for anyq ∈ Qα.

Starting from the set of all the vertices of a regular icosahedron, for example,
I = {e1, e2, . . . , e6,−e1,−e2, . . . ,−e6}, where

e1 = (1, 0, τ ) e3 = (τ, 1, 0) e5 = (−1, 0, τ )

e2 = (τ,−1, 0) e4 = (0, τ,1) e6 = (0,−τ, 1)
(2)

one considers the orthogonal decompositionE6 = E‖6 ⊕ E⊥6 , whereE‖6 is the subspace
generated by the vectors

e1 = (1, τ, τ,0,−1, 0) e2 = (0,−1, 1, τ,0,−τ) e3 = (τ, 0, 0, 1, τ,1). (3)

The group of all the isometries of the spaceE3 which leave the setI invariant is
isomorphic to the icosahedral group

Y = 235= 〈a, b ∣∣ a5 = b2 = (ab)3 = e〉 (4)
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and is generated by the transformations

a(x, y, z) =
(

1

2
x − τ

2
y + τ − 1

2
z,
τ

2
x + τ − 1

2
y − 1

2
z,
τ − 1

2
x + 1

2
y + τ

2
z

)
b(x, y, z) = (−x,−y, z).

(5)

It can be regarded as an orthogonal irreducible representation of this group. TheY -invariant
setI coincides with the orbitY (1, 0, τ ) = {g(1, 0, τ ) | g ∈ Y } of this representation, and
the generators ofY define the signed permutations

a =
(
e1 e2 e3 e4 e5 e6

e1 e3 e4 e5 e6 e2

)
b =

(
e1 e2 e3 e4 e5 e6

e5 −e2 −e3 e6 e1 e4

)
. (6)

The corresponding transformationsa, b : E6 −→ E6

a =
(
ε1 ε2 ε3 ε4 ε5 ε6

ε1 ε3 ε4 ε5 ε6 ε2

)
b =

(
ε1 ε2 ε3 ε4 ε5 ε6

ε5 −ε2 −ε3 ε6 ε1 ε4

)
where ε1 = (1, 0, 0, 0, 0, 0), ε2 = (0, 1, 0, 0, 0, 0), . . . , ε6 = (0, 0, 0, 0, 0, 1) is the
canonical basis ofE6, defining the orthogonal representation

a(x1, x2, x3, x4, x5, x6) = (x1, x6, x2, x3, x4, x5)

b(x1, x2, x3, x4, x5, x6) = (x5,−x2,−x3, x6, x1, x4)
(7)

of Y in E6. The subspaceE‖6 ⊂ E6 and its orthogonal

E⊥6 =
{
x ∈ E6

∣∣∣ 〈x, y〉 = 0 for anyy ∈ E‖6
}

(8)

areY -invariant, and the corresponding orthogonal projectorsπ‖, π⊥ : E6 −→ E6 satisfying
the relations

π‖ ◦ π‖ = π‖ π⊥ ◦ π⊥ = π⊥

π‖ ◦ π⊥ = π⊥ ◦ π‖ = 0 π‖ + π⊥ = 1
(9)

are given by

π‖ =M( 1
2,

1
10

√
5) π⊥ =M( 1

2,− 1
10

√
5) (10)

where

M(ξ, η) =



ξ η η η η η

η ξ η −η −η η

η η ξ η −η −η
η −η η ξ η −η
η −η −η η ξ η

η η −η −η η ξ


. (11)

Each elementx ∈ E6 can be written in the form

x = x‖ + x⊥
such thatx‖ ∈ E‖6 andx⊥ ∈ E⊥6 . The elementsx‖, x⊥ satisfying this condition are uniquely
determined and are given byx‖ = π‖x, x⊥ = π⊥x.

The vectorsv1 = κe1, v2 = κe2, v3 = κe3, where κ = 1/
√

2(τ + 2), form an
orthonormal basis ofE‖6, and the isometry

λ : E3 −→ E‖6 : r 7→ (
κ〈r, e1〉, κ〈r, e2〉, . . . , κ〈r, e6〉

)
(12)
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which is an isomorphism of representations ofY with the property λ(1, 0, 0) =
v1, λ(0, 1, 0) = v2, λ(0, 0, 1) = v3, allows us to identify the physical spaceE3 with
E‖6. One can remark that

E‖6 =
{(〈r, e1〉, 〈r, e2〉, . . . , 〈r, e6〉

) ∣∣ r ∈ E3
}
. (13)

The setL = cZ6 ⊂ E6, wherec = 1/κ, is aY -invariantZ-module. Since

π‖(cεj ) = λ(ej ) (14)

for any j ∈ {1, 2, . . . ,6}, in view of the considered identification

π‖(L) =
6∑

j=1

Zej . (15)

Let ρ = c/2, and letW be a set satisfying the condition

π⊥
(
(−ρ, ρ)6) ⊂ W ⊂ π⊥ ([−ρ, ρ]6

)
(16)

which contains one and only one point from each pair of opposite points of its boundary [9].
In particular, one can remark that

‖x⊥‖ < ρ H⇒ x⊥ ∈ W x⊥ ∈ W H⇒ ‖x⊥‖ < ρ
√

6. (17)

The vertex set corresponding to the three-dimensional Penrose tiling is [9]

Q = {x‖ ∣∣ x ∈ L, x⊥ ∈ W} . (18)

If the constantsα ∈ R− {0} andβ ∈ (−1, 1] are such that the matrixS = απ‖ + βπ⊥
has integer entries, then

x ∈ L
x⊥ ∈ W

}
H⇒

{
Sx ∈ L
(Sx)⊥ = βx⊥ ∈ W. (19)

In this casex‖∈Q H⇒ (Sx)‖= αx‖∈Q, that is,r 7→ αr is a self-similarity ofQ.
The matrixS = απ‖ + βπ⊥ =M( 1

2(α + β), 1
10(α − β)

√
5) has integer entries if and

only if the numbers

n = 1
2(α + β) k = 1

10(α − β)
√

5 (20)

are integers. It follows that

α = n+ k
√

5 β = n− k
√

5. (21)

The set

C =
{
n+ k

√
5
∣∣∣ (n, k) ∈ Z2, −1< (n+ k

√
5)∗ 6 1

}
(22)

where(n+ k√5)∗ = n− k√5, represents a one-dimensional quasicrystal [7], and

E3 −→ E3 : r 7→ αr (23)

is a self-similarity ofQ, for anyα ∈ C−{0}. In particular, between the elements ofC there
is the well known scaling factorτ 3 = 2+√5.

For anyα ∈ C − {0} satisfying the relation|α∗| < 1/
√

6 we denote

ρα = ρ(1− |α∗|
√

6)/(1+ |α∗|) Sα = απ‖ + α∗π⊥. (24)

Sinceπ⊥(L) is dense inE⊥6 , it follows that the set

Lα =
{
y ∈ L ∣∣ ‖y⊥‖ < ρα

}
(25)
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is an infinite set. For eachy ∈ Lα and eachx ∈ L such thatx⊥ ∈ W we get

‖(Sα(x − y)+ y)⊥‖ = ‖α∗(x⊥ − y⊥)+ y⊥‖ 6 |α∗| ‖x⊥ − y⊥‖ + ‖y⊥‖
6 |α∗| (‖x⊥‖ + ‖y⊥‖)+ ‖y⊥‖ < |α∗|

√
6ρ + (|α∗| + 1)ρα = ρ

whence(Sα(x − y)+ y)⊥ ∈ W . Thus

x ∈ L
x⊥ ∈ W

}
H⇒

{
Sα(x − y)+ y ∈ L
(Sα(x − y)+ y)⊥ ∈ W

(26)

for any y ∈ Lα. It follows that

x‖ ∈ Q H⇒ (Sα(x − y)+ y)‖ = α(x‖ − y‖)+ y‖ ∈ Q (27)

for any y ∈ Lα, i.e.Q is invariant under the affine similarity

E3 −→ E3 : r 7→ α(r − q)+ q (28)

for any q ∈ Qα =
{
y‖
∣∣ y ∈ Lα} ⊂ Q.

The results obtained are similar to those recently reported by Masákov́a et al [7], but the
two approaches are different. More that that, the method of Masákov́a et al does not work
in the case of Penrose patterns. The only patterns ofE3 considered in [7] are those defined
by a so-called ‘star map’. Each star map ofE3 is defined by a pair of bases{α1, α2, α3}
and{α∗1, α∗2, α∗3} of E3 and has the form

∗ : M −→ M∗ :
3∑

j=1

(aj + bj τ )αj 7→
3∑

j=1

(aj + bj τ ′)α∗j (29)

where

M =
3∑
i=1

Z[τ ]αi M∗ =
3∑
i=1

Z[τ ]α∗i (30)

τ ′ = 1
2(1−

√
5) andZ[τ ] = {a + bτ | a, b ∈ Z}. For each star map and each bounded

convex and closed set� ⊂ E3 with non-empty interior one obtains the quasiperiodic pattern

6(�) = {x ∈ M ∣∣ x∗ ∈ �} . (31)

The Z-moduleL = ∑6
j=1Zej does not contain the elementτe1. Indeed, the relation

τe1 =
∑6
j=1 xj ej is equivalent to the system of equations

τ = x1+ τx2+ τx3− x5

0= −x2+ x3+ τx4− τx6

τ + 1= τx1+ x4+ τx5+ x6

(32)

which does not admit integer solutions.
SinceL is not aZ[τ ]-module (e1 ∈ L, but τe1 6∈ L) andM is a Z[τ ]-module, there

cannot existα1, α2, α3 such thatL = M. If we chooseM such thatL ⊂ M, then

τe1+ L =
{
τe1+ x

∣∣ x ∈ L} (33)

is a subset ofM − L and

(τe1+ L)∗ =
{
x∗
∣∣ x ∈ τe1+ L

}
(34)

is a dense subset ofE3. It follows

� ∩ (τe1+ L)∗ 6= ∅ (35)

and hence,6(�) 6⊂ L.
Thus, despite the infinite number of possible choices for the bases{α1, α2, α3},

{α∗1, α∗2, α∗3} and�, the method of [7] does not allow us to obtain the icosahedral patternQ.
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